HEC-RAS

🗱 HEC-RAS - River Analysis Sy	/stem	
File Edit Run View Optic	ons Help	
☞■¥ <u>╤</u> ŵ£≵⊨	ᢦᢞ测∠ਝ፟⊾ோ∎෨₨	Hydrologic Engineering Center
Project:		
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Project Description :		SI Units

A Tutorial

(Model Development of a Small Flume)

HEC-RAS

- Hydraulic Engineering Center:River Analysis System
- 1-D step backwater model
- Utilizes energy equation to compute water surface elevation for a given discharge, geometry, and resistance

Organizational Structure

- Open project –creates (.prj file)
- Includes:
- 1. Unit system (SI/US customary)
- 2. Geometry (XS, bridges, weirs, etc.) (.g file)
- 3. Flow Data (steady, unsteady) (.f file)
- 4. Plan data(what combination of flow/geometry to use for the analysis) (.p file)

Open a new project

🔣 HE	C-RAS	- Rive	er Analy	ysis Syste	m		
File	Edıt	Run	View	Options	Help		
Ne	w Proje	ct					Ĩ.
Ор	en Proj	ect					
- 5av	ve Proje	ect					
Sav	ve Proje	ct A	5				
Re	nøme Pr	oject	Title .				
De	lete Pro	oject					
Pro	oject Su	mmar	γ·				
Imp	port HE	C-2 I)sts				
Imp	port HE	C-RA	5 Data				
Ge	nerste	Repo	rt				
Exp	port GIS) Data	a				
Exp	port to	HEC-	D55				
Re	store B	ackup) Data				•
Exr	t						
C:\	wris\SA	N_Jo	seAdo	₽ <i>е</i> \HEC_R	ASVAdo	be Alternative- model for prof\alternative_7b	vl.prj
C:\	COURS	E5\C	E_381	HEC_RAS		Viume_1.prj	
C:\	wris\SA	N_Jo	se\do	be\represe	entativ <i>e</i>	e_reachesWdobeHiddenVilla.prj	
C:\	wris\re	dhill∖	IEC_RA	SWESTRI	P.prj		
C:\	wris\re	dhill∖	IEC_RA	SVRED_NE	W.prj		
C:\	HEC Da	ta\RA	S\test	.prj			

Name the project (.prj file)

	New Project		
	Title	File Name	Directories
	flume_study	flume_study.prj	C:\HEC Data\RAS
PS USO DA	test t	est.prj	<u>⊜</u> C:\
Elle Edit			HEC Data
FUX			
Project:			
Plan:			
Geometry:			
Steady Flow:			
Unsteady Flow: Project			
Description :			
	OK Cancel Help	Create Directory	🖃 c: [IBM_PRELOAD] 🛛 🔻
	Set drive and path, then enter a new project title and file n	ame.	,

After you have entered the above, click O.K. and O.K. again

Select SI units

🗱 HEC-RAS - River Analysis System 🔲 🔲 🔀				
File Edit Run View	Options Help	_		
R R V - C F	Program Setup	BS Hydrologic Engineering Center		
	Default Parameters >	US Army Corps of Engineers		
Project: flume_study	Unit system (US Customary/SI)	me_study.prj		
Plan:	Convert Project Units			
Geometry:		1		
Steady Flow:				
Unsteady Flow:				
Project Description :		SI Units		

HEC-RAS		
9	Select Units System	
 ○ US Customary ⊙ System Internation ☐ Set as default for 	onal (Metric System) r new projects	
ОК	Cancel	Help

Geometry Files (.g)

• Create a reach- single or dendritic

Click here

	🔣 Geometri	ic Data – Edit/Enter geometric data		
	File Edit	Run View Options Help		
	FR	ತು≦₺₽৺≝≝८๕๕ฃฃฃ๛	Hydrologic Engineering Center US Army Corps of Engineers	Ini
Edi	t/Enter ge	ometric data	i	
	Plan:			
	Geometry:			
	Steady Flow:			
	Unsteady Flow:			
	Project Description :	I	SI Units	

Draw the reach upstream to downstream

Double click to end

Name the river and reach

Geometry

- Cross sections define the channel/flume geometry
- Cross sections are defined by Station(x) and elevation (y) in the plane of the cross section perpendicular to the flow
- River station, downstream reach length and cross section thalweg elevation define the channel slope
- Overbank stations differentiate channel and floodplain characteristics
- Resistance to flow is defined by Manning n coefficients for both the channel and floodplain
- Expansion and contraction coefficients define energy losses associated with velocity head changes between cross sections
- Ineffective flow areas are can store but not convey water downstream
- Obstruction areas block flow completely
- Levee elevations confine flow to channel until the levees are overtopped

More geometry

- Junctions define where two reaches are connected
- Bridges and culverts
- Inline weirs/gates
- Off channel storage
- Pumping stations
- All can be modeled with a reasonable amount of detail (can be covered at a later date)

Flume example

- Width- 7.57 cm (0.0757 m)
- Wall height- 12 cm(0.12 m)
- Flume Length- 182 cm (1.82 m)
- Slope-none, horizontal
- Roughness- Plexiglass (n~0.0085)
- Discharge- 1.5 l/s (0.0015 m³/s)
- Cross section spacing -10 cm (0.1 m)
- Downstream boundary condition (critical depth at outlet, free overfall)

Enter cross section data

Add a new cross section

Start at downstream river station 0.00 m

(HEC RAS ESTABLISHES THE DOWN STREAM END AS ZERO FOR A STARTING DISTANCE AN PROGRESSIVELY WORKS UP STREAM IN CHAINAGE)

	Il Structure I		
😴 Cross Section Data			
Exit Edit Options Plot 1	telp		
River: Flume	Apply Data	Plot Options	Prev XS Plots Clear Prev
Reach: A 🗾 Rive	r Sta.: 👤 🕇		
Description			
Del Row Ins Row	Downstream Reach Lengths		
Cross Section X-Y Coordinates	LOB Channe HEC-RAS		
Station Elevation	Enter a new riv	ver station for the new	
	Manning's n Val cross sec	ction in reach "A"	
	LOB Channe		
4			HANT BUT WE LOOKAND
5	Main Channel Bar	No	o Data for Plot
6	Left Bank OK	Cancel	
9	Contraction Expansion		
10 -1			
	, ,		

Enter and apply data assuming an arbitrary datum of 100.00 m, notice the downstream reach length is zero since we are at the furthest downstream extent of the

model Cross-sectional data

- Entered from left to right looking down stream

Click on "Apply Data" to add the cross-section to the model and to view the section

Main Channel Chainage Definition

Since the geometry is uniform from the upstream to downstream extent, we can make use of the cross section interpolation tool to compute the geometry with the specified cross section spacing

This will take

a few steps....

Add a new cross section at the upstream end river station 1.82 m

(Since we have the same geometry we are going to make use of the copy section function)

		<u> </u>		
🤝 Сгоза Бес	stion Data			
Exit Edit	Options Plot Help			
River: Flume	Add a new Cross Section	🚽 + 📾	Plot Options	🛅 🎒 🥅 Keep Prev XS Plots 🔤 Clear Prev
Reach: A	Copy Current Cross Section	- + +		flume_study Plan:
Description [Rename River Station	F		Geom: Flow: Downstream excloritume
Description [c	Delete Cross Section		«	.0085
	Adust Elevations	BOB	100.14	Legend
Station	Adjust Stations	+	100.12	Groud
10	Adjust n or K values	2		
20	Skew Cross Section	ROB	<u>と</u> ^{100.10} 目	
3 0.0757		- 0085	등 100.08	
5	Ineffective Flow Areas	ations	🗟 100.06	
6	Levees	it Bank		
7	Obstructions		Ш 100.04	
8	Add a Lid to XS	its 😰	100.02	
10	Add Ice Cover	ansion	100.00	
	Add a Rating Curve		0.0	0 0.02 0.04 0.06 0.08
	Horizontal Variation in n Values			
,	Horizontal Variation in K Values			Station (m)
Edit Station Elev	Vertical Variation in n Values		,	
Eak oradion 2104				

Enter the station chainage at the upstream end of the flume (for the flume the upstream end will be located at1.82m) Otherwise, if the geometry was different, you would Click – options / add a new cross section

🖵 Cross Section Data	
Exit Edit Options Plot Help	
River: Flume Apply Data 🕞 + 📾 Plot Options 🖻 🗐 🕞 🗆 Keep Prev XS Plots Clear Prev	
Reach: A Time_study Plan: Description Downstream end of flume Image: State of flume	
Del Row Ins Row Downstream Reach Lengths Cross Section X-Y Coordinates LOB Channel Station Elevation	Legend Groud
1 0 100.12 Manning's n Values Copy Cross Section 2 0 100 100 100 100	Baik Sta
3 0.0757 100 4 0.0757 100.12 COB Criarinel NOB Select a River and Reach and then enter a new river sta	ati m.
Main Channel Bank Stations to River: Flume 6 Left Bank Right Bank D Image: State of the st	
7 0 0.0757 Ⅲ Reach: A TRiver Sta 1.82	
8 Cont\Exp Coefficients 2 OK Can	icel
	1000101
0.00 0.02 0.04 0.06	0.08
Station (m)	

Now it's time to interpolate cross sections...In the main geometry menu click on tools/XS interpolation and select between two cross-sections

	🔨 Geometric Data	
	File Edit View Tables	Tools Help
51 HEC-RAS - River Analysis	Within 2 Reach	X5 Interpolation +
File Edit Run View Op	Between 2 X5's	Channel Modification
	Junct.	Graphical Cross Section Edit
		Reverse Stationing Data
Project: flume_study	Cross	Cross Section Points Filter
Plan:	Section	Fixed Sediment Elevations
Geometry:	Brdg/Culv	Pilot Channels
Steady Flow:		Ineffective Areas - Set to Permanent Mode
Unsteady Flow:		Ineffective Areas - Fix Overlapping
River: Project	Structure	Datum Adjustment
Reach: Pescription: Pescription	Lateral	GI5 Cut Line Check
Description Downstream end of flume	Structure	GIS Coordinates +
Del Bow Ins Bow Do		Plot GIS Profile Reach Bounds
Cross Section X-Y Coordinates	Storage Area	Legend
Station Elevation		Reach Connectivity Groud
1 0 100.12	Storage Area Conn	Reach Order for Computations
2 0 100 LOE	b → 	Reach Order> Find Loops
4 0 0757 100 0.0085	Pump	Flow Roughness Factors
5	Station P	Seasonal Roughness Factors
		Design Cross Sections
	Param.	
9	View	
10 - 0.1	Picture	
		0.08
	Some schematic data outsi	ide default extents (see View/Set Schematic Plot Extent
		0.0148, 0.6379

Enter 0.1 m as the max distance between XS's, then hit the interpolate button and your geometry is complete

	🗙 Geometric Data	
	File Edit View Tables Tools Help	1
Profile Table - View outp File Edit Run View O	Tools River Reach Area Conn. Station Conn.	
	5 Interpolation	
Project: flume_study River	r: Flume 🗨 Upper Riv Sta: 1.82 💌 💵 🕇	
Plan: Read	ch: A 🚽 Lower Riv Sta: 🛛	
Geometry: Dista	nce Between XS's 10,096 3 Decimal places 💌	
Steady Flow: Maxi	mum Distance (m) 👻 .1 💦 🔀 Delete Interp [
Unsteady Flow:		
Project Description :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1
	Close Help	
	10 m/s hatmaan 101 and 11 021	10.54
Interp		>0

If you continued to have different cross sectional geometry at each cross-section, you would continue to add new crosssections and enter the distances between each section.

Your main geometry menu should now look like this

Now is a good time to save your geometry data, remember the .g file? Name and save it in the Ras project directory you are using.

Let's look at the profile for our model, click on the cross section data menu tab, then plot/profile

Cross Section Data	
Exit Edit Options Plot	Help
River: Flume Plot	Cross Section (in separate window) 🖻 🙆 🗆 Keep Prev XS Plots Clear Prev
Reach: A	flume_study Plan:
Description Upstream end of flume	Geom: Flow: Upsteam end of flume
Del Row Ins Row	Downstream Reach Lengths 100.14
Cross Section X-Y Coordinates Station Elevation	LOB Channel ROB 0.096 0.096 100.12
10 20 100.12	Manning's n Values 12 E 100.10
3 0.0757 100 4 0.0757 100 12	0.0085 0.0085 0.0085 G 100.08
5	Main Channel Bank Stations 000.06
7	0 0.0757
8	Cont/Exp Coefficients 100.02
10	
]	Station (m)

- If your plot does not look like this:
- go to "options" on the Cross section data window
- go to "scaling"
- change y axis min to 100.0
- change y axis max to 100.14
- change y axis increment to 0.02
- click O.K.
- go to "options / variables"

- click on the first two that are un checked (left main channel bank elevation

& right main channel bank elevation), click O.K.

- click "options /grid" and make sure that "thick border, major and minor tick grids" are all on.

Now let's put some water in this flume...

Flow data (.f files)

- Steady (constant with time)
- Unsteady (varies with time)
- Regimes(supercritical, subcritical, mixed)
- Boundary conditions:
 - 1. Supercritical-upstream
 - 2. Subcritical-downstream
 - 3. Mixed-both

Flow data continued

- Boundary condition types:
 - 1. Known water surface elevation
 - 2. Critical depth- free overfall or weir
 - 3. Normal depth- downstream energy slope required
 - 4. Rating curve (WSE as a function of discharge)

Now open the steady flow data menu

Let's consider 3 flows 0.5,1.0, and 5 liter/s

Enter and apply the data

	🔆 Steady Flow Data 📃 🗖 🛛
File Edit Run V	File Options Help
RRYAN	Enter/Edit Number of Profiles (2000 max): 3 Reach Boundary Conditions Apply Data
	Locations of Flow Data Changes
Project: flume_study	River: Flume 💌
Plan:	Reach: A 🗾 👻 River Sta.: 1.82 🚽 Add A Flow Change Location
Geometry: flume	Elew Change Legation Profile Names and Elew Pates
Steady Flow:	River Reach RS PE 1 RE 2 RE 2
Unsteady Flow:	1 Flume A 1.82 0.0005 0.001 0.005
Project	
	Edit Steadu flow data for the profiles (m3/s)
	je uk oteady now data for the profiles (movs)

Now we are going to change the profile names (from PF 1, PF2, PF3) -On the "steady flow data window"

- Chose options / edit profile names

Double click each box on the right of the window to what you see in the HEC-RAS box, and then click O.K.

Now we need to specify the boundary condition, let's assume subcritical flow and critical depth at the overfall therefore a downstream boundary condition and a H2 profile

Salaat Daaah

	Select Reach
🔣 HEC-RAS - River A 🌾 Steady Flow Data - flume	Boundary
File Edit Run VI File Options Help	conditions
Enter/Edit Number of Profiles (2000 max): 3 Reach Boundary Conditions	from the
Project: [flume_study] Locations of Flow Data Changes	steady flow
Plan: Hume Plane Plane Plane Plane Add A Flow Change Location	monu
Steady Flow: flume Flow: Change Location	menu,
Unsteady Flow: River Reach RS 0.5 1.0 5.0	then select
Description :	critical depth
Steady Flow Boundary Conditions	in the
Set boundary for all profiles Set boundary for one profile at a time	boundary
Available External Boundary Condition Types	
Known W.S. Critical Bepth Normal Depth Rating Curve Delete	conditions
Selected Boundary Condition Locations and Types	menu
River Reach Profile Upstream Downstream Flume A all Critical Depth	Easy enough now save the
	data to your directory, this
	creates a .f file. Since this is
	the first time saving the flow
Steady Flow Reach-Storage Area Optimization DK Cancel Help	data use the "SAVE FLOW
Enter to accept data changes.	DATA AS" option
	*

Your main HEC-RAS interface should show the following now

MAKE SURE THAT ALL OF YOUR FILES ARE STORED IN THE SAME DIRECTORY (what ever that directory may be) OR, THE SIMULATION WILL NOT WORK

🔣 HEC-RAS	5 - River Analysis System				
File Edit	Run View Options Help				
FBX	ᅸᇳᅸᅸᄜᢦᆧፇᆮᄬ		🔲 💣 oss	Hydrologic Engineering Center US Army Corps of Engineers	Ini
Project:	flume_study	C:\HEC Data	RAS\flume_study.pr	i	
Plan:					
Geometry:	flume	C:\COURSES	\CE_381\HEC_RAS	_RUNS\tutorials\flume_s	study.g01
Steady Flow:	flume_study	C:\COURSES	\CE_381\HEC_RAS	_RUNS\tutorials\flume_s	study.f01
Unsteady Flow:					
Project Description :				SI Units	

One last step before we run the simulation, we must couple the geometry and flow with the plan (.p file)

On the main Hec-Ras interface select Run and steady flow analysis

🔣 HEC-RAS	- River Analysis System							
File Edit	Run View Options Help							
FBX	Steady Flow Analysis Unsteady Flow Analysis	Hydrologic Engineering Center						
Project: [Plan: [Sediment Analysis Hydraulia Design Functions	C:\HEC Data\RAS\flume_study.prj						
Geometry:	Run Multiple Plans	C:\COURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.g01 C:\COURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.f01						
Unsteady Flow: Project Description :		SI Units						

Go ahead and name the plan and save it in the working directory and give a short ID, maybe "flume", use the same name in the station identifier box

herel	A Steady Flow Analysis		
🔝 HEC-RAS -	File Options Help		- - ×
File Edit R	New Plan	Short ID flume	654K 6393
FRY	Open Plan		Engineering Center
Project:	Save Plan	studu 💌	
Di fiur	Save Plan As 🦻	_study	utoriale) flume, studu p01
Plan: Inum	Rename Plan Title	<u>):</u>	utonais vnume_study.po1
Geometry: flum	Delete Plan		utorials\flume_study.g01
Steady Flow: flum			utorials\flume_study.f01
Unsteady Flow:	Exit		
Project 👘	······	POMPLITE	SELInits
Description :	L		
	Enter to compute water surface profile	IS	

Now we can go ahead and save a plan with the existing geometry and flow data

Now we are ready to Run our simulation, hit the "compute" button when ready

When the following screens are visible the simulation has been run

👯 HEC-R	AS Finished Co	mputations		= = 🛛	\varkappa Steady Flow Analy	515		
Steady Flo	w Simulation				File Options Help	2		
River:	Flume	RS:	1.82		Plan : flume	Short ID	flume	
Heach:	A	Node Type:	Cross Section		Geometru File :	0		
Profile:	PF 3					Inume		
Simulation	3/3				Steady Flow File :	flume_study		<u> </u>
Completion.	- 575 - 14				Flow Begime)escription :		
	n Messages				Subcritical			
Steady Flo	w Simulation Version 3	3.1.2 April 2004			C Supercritical			
Finished 5	eauy riow simulation				C Mixed			
Total Com	outation Time = 0 min	0.41 sec				COMPLITE		
					1000			
	HEC-RA	5 - River Analysi	s System					
	File Edit	Run View (Options Help					
			₽₽₩₽₽₽	☞┗뿓◧◧	Hydrologic Engine US Army Corps o	eering Center		
	Project:	flume_study		C:\HEC Data\RAS	i\flume_study.prj			
	Plan:	flume		C:\COURSES\CE	_381\HEC_RAS_RUNS\tutoria	als\flume_study.p01		
	Geometry:	flume		C:\COURSES\CE	_381\HEC_RAS_RUNS\tutoria	als\flume_study.g01		
	Steady Flow:	flume_study		C:\COURSES\CE	_381\HEC_RAS_RUNS\tutoria	als\flume_study.f01		
	Unsteady Flow							
	Project			4.6V		Inite		
	Description :	1				Drinks		

Close the computation screen and congratulations you just ran a HEC-RAS model!

Let's look at the water surface profile generated for the 5.0 L/s flow, click on the view profiles tab on the main interface

A series of variables can be plotted on the profile. Lets add the critical flow depth....

Navigate to options / variables on the Profile Plot Window

Make sure that the following are checked on:

- -Left main channel bank elevations
- Right main channel bank elevations
- Filled in water surface
- Critical depth elevation

HEC-RAS Select Variables ✓ Water Surface Energy Grade Elevation Observed Water Surface Ice Cover Reach Labels Left levee Right levee Pilot Channel Sediment Elev Left Side Lateral Structures Right Side Lateral Structures ΰĸ Cancel

Click on the tables tab of the main menu interface. Select options/profiles, select all three flows and click the O.K. button. 🐯 HEC-RAS - River Analysis System File Edit Run View Options Help 🛗 💕 DSS Hydrologic Engineering Center ₹.+ (A) Å HD too fill US Army Corps of Engineers flume stud C:\COURSES\CE 381\HEC RAS\RUNS\tutorials\flume study.prj Project: C:\COURSES\CE_381\HEC_RAS_AUNS\tutorials\flume_study.p01 flume Plan: ES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.g01 I Profile Output Table - Standard Table 1 ES\CE_381\HEC_RAS_RUN6\tutorials\flume_study.f01 Options Std. Tables Locations Help File HEC-R Reload Data Plans SI Units Profiles Elev Crit W 🔺 Reach ... (m) (m) Reaches 100.10 A Select Profiles A Include Interpolated X5's 100.10 Selected (3) Avail Profiles A 100.10 ✓ Include Node Names in Table 1 (0.5) 2 (1.0) 3 (5.0) 1 (0.5) A 100.09 2 (1.0) ✓ Include Profile Name in Table A 100.09 3 (5.0) Table Cross Section Order A 100.09 A Standard Table # Dec Places 100.09 A 100.09 . Units System for Viewing A 100.09 -Δ 100.09 Define Table ... 4 1 Save Table Remove Table ... Select All Clear All OK. Cancel

The standard output of HEC RAS lists variables with several different levels of precision, which is dependent upon the particular variable. Since the flume is a very small representation of a "river reach", we need to increase the level of precision on the output to properly capture the scale of the flume.

On the "PROFILE OUTPUT TABLE", click on OPTIONS / STANDARD TABLE & DEC. PLACES.

File	Options	Std. Ta	bles Lo	cations	Help							
	Plans					HE	C-RAS Pla	n:flume Riv	er: flume	Reach: A		
Reach	Profiles	•			S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
	Reache	5			(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
A					- 100.02		100.03	0.001560	0.28	0.00	0.08	0.57
A	✓ Include	Interpol	ated X5's	5	100.04		100.04	0.001960	0.36	0.00	0.08	0.61
<u>A</u>	✓ Include	Node Na	mes in Ta	able	100.10		100.12	0.004212	0.69	0.01	0.08	0.71
<u> </u>	✓ Include	Profile I	Name in T	able	100.00		400.00	0.004575				0.50
<u>A</u>	Table C	2055 Se	tion Ord	er	100.02		100.03	0.001575	0.28	0.00	0.08	0.58
<u>A</u>	Charles Law				100.04		100.04	0.001970	0.35	0.00	0.08	0.51
<u>A</u>	Standar	ra lapie	# Dec Fi	aces	100.10		100.12	0.004205	0.63	0.01	0.00	0.71
<u> </u>	Units 5	ystem fo	r Viewing	9)	100.02		100.03	0.001615	0.28	0.00	0.08	0.59
8	Define	Table			100.02		100.03	0.002010	0.20	0.00	0.00	0.00
A	<i>с</i> т				100.04		100.04	0.004273	0.69	0.00	0.08	0.02
<u> </u>	Dave 12	IPIE										
A	Remove	: Table	-		100.02		100.03	0.001657	0.29	0.00	0.08	0.59
A	1.53263×	1.0	0.00	100.00	100.04		100.04	0.002054	0.37	0.00	0.08	0.63
A	1.53263*	5.0	0.01	100.00	100.09		100.12	0.004344	0.70	0.01	0.08	0.73
A	1.43684×	0.5	0.00	100.00	100.02		100.03	0.001702	0.29	0.00	0.08	0.60
A	1.43684*	1.0	0.00	100.00	100.04		100.04	0.002099	0.37	0.00	0.08	0.64
A	1.43684×	5.0	0.01	100.00	100.09		100.12	0.004419	0.70	0.01	0.08	0.73
	1.044.05*		0.00	100.00	100.00		400.00	0.004.754				
<u>A</u>	1.34105*	0.5	0.00	100.00	100.02		100.03	0.001751	0.29	0.00	0.08	0.61
A	1.34105*	1.0	0.00	100.00	100.03		100.04	0.002148	0.38	0.00	0.08	0.54
<u> </u>	1.34105	5.0	0.01	100.00	100.03		100.12	0.004437	0.71	0.01	0.00	0.74
~	1.24526×	0.5	0.00	100.00	100.02		100.03	0.001904	0.29	0.00	0.08	0.62
A	1.24526*	10	0.00	100.00	100.02		100.03	0.001004	0.20	0.00	0.08	0.65
A	1.24526*	5.0	0.00	100.00	100.09		100.12	0.004581	0.71	0.00	0.08	0.75
A	1.14947*	0.5	0.00	100.00	100.02		100.03	0.001863	0.30	0.00	0.08	0.63
A	1.14947×	1.0	0.00	100.00	100.03		100.04	0.002258	0.38	0.00	0.08	0.66
A	1.14947*	5.0	0.01	100.00	100.09		100.12	0.004669	0.72	0.01	0.08	0.76
A	1.05368×	0.5	0.00	100.00	100.02		100.03	0.001928	0.30	0.00	0.08	0.64
<u>A</u>	1.05368*	1.0	0.00	100.00	100.03		100.04	0.002319	0.39	0.00	0.08	0.67
<u>A</u>	1.05368*	5.0	0.01	100.00	100.09		100.12	0.004762	0.73	0.01	0.08	0.77
<u>ه</u>	957894×	0.5	0.00	100.00	100.02		100.03	0.001998	0.30	0.00	0.08	0.65
A	.957894×	1.0	0.00	100.00	100.02		100.03	0.002384	0.39	0.00	0.00	0.03
A	.957894×	5.0	0.01	100.00	100.09		100.12	0.004861	0.73	0.01	0.08	0.00
			0.01		.00.00		100.12	5.001001	0.10	0.01	0.00	0.10

Change any # Dec. values less than 4 to 4 decimal places HEC-RAS Edit the number of decimal places standard tables. Variable #Dec 1 Q Total 4 2 Min Ch EL 4 W.S. Elev 4 Crit W.S. 4 5 E.G. Elev 4 6 E.G. Slope 6 7 Vel Chnl 4 8 Flow Area 4 9 Top Width 4 10 Froude # Chl 4 0K Cancel

Total flow in cross section

You can export the data from the Profile Output Table to any application

E.I	me Outpu		- Otanidai									
гпе	Options	OTA. IS	apies Lo	Cations	пер							
Сор	y to Clipt	poard (D)ata and I	Heading	5)	HEC-RAS Plan: flume River: flume Reach: A						
Сор	y to Clipt	oard (D	ata Only))	ev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Prin	t					(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
W/	e to Text	File			42		100.0281	0.001560	0.2792	0.0018	0.0756	0.5736
	LC LU ICAL				61		100.0428	0.001960	0.3637	0.0027	0.0756	0.6113
Exp	ort HEC5	Q 53 K	ecords	-	62		100.1204	0.004212	0.6894	0.0073	0.0756	0.7096
Evit												
	_				40		100.0280	0.001575	0.2801	0.0018	0.0759	0.5773
A	1.72421*	1.0	0.0010	100.0000	100.0359		100.0426	0.001970	0.3644	0.0027	0.0759	0.6144
A	1.72421*	5.0	0.0050	100.0000	100.0958		100.1200	0.004205	0.6896	0.0073	0.0759	0.7113
<u>A</u>	1.62842×	0.5	0.0005	100.0000	100.0238		100.0278	0.001615	0.2826	0.0018	0.0759	0.5851
<u>A</u>	1.62842×	1.0	0.0010	100.0000	100.0356		100.0424	0.002010	0.3671	0.0027	0.0759	0.6214
A	1.62842*	5.0	0.0050	100.0000	100.0951		100.1197	0.004273	0.6943	0.0072	0.0759	0.7186
<u> </u>												
A	1.53263*	0.5	0.0005	100.0000	100.0236		100.0277	0.001657	0.2852	0.0018	0.0759	0.5931
A	1.53263*	1.0	0.0010	100.0000	100.0353		100.0423	0.002054	0.3700	0.0027	0.0759	0.6287
A	1.53263*	5.0	0.0050	100.0000	100.0945		100.1194	0.004344	0.6991	0.0072	0.0759	0.7261
<u> </u>	1 1000 10		0.0005	100.0000	100 0000		100 0070	0.001700		0.0010	0.0750	0.0010
A	1.43684*	0.5	0.0005	100.0000	100.0233		100.0276	0.001702	0.2879	0.0018	0.0759	0.6016
A	1.43684*	1.0	0.0010	100.0000	100.0350		100.0421	0.002099	0.3731	0.0027	0.0759	0.6365
A	1.43684*	5.0	0.0050	100.0000	100.0938		100.1190	0.004419	0.7041	0.0071	0.0759	0.7339
	1.04105*	0.5	0.0005	100.0000	100.0001		100.0074	0.001751	0 2000	0.0010	0.0750	0.0107
A	1.34105*	1.0	0.0005	100.0000	100.0231		100.0274	0.001751	0.2908	0.0018	0.0759	0.6107
A	1.34105*	5.0	0.0010	100.0000	100.0347		100.0419	0.002148	0.3763	0.0026	0.0759	0.6447
A	1.34105"	5.0	0.0050	100.0000	100.0931		100.1187	0.004497	0.7093	0.0071	0.0759	0.7421
	1.24526×	0.5	0.0005	100.0000	100 0220		100 0272	0.001004	0 2020	0.0017	0.0759	0.6205
A	1.24020 1.24526×	1.0	0.0000	100.0000	100.0223		100.0273	0.001604	0.2333	0.0017	0.0759	0.6203
A	1.24020 1.24526×	5.0	0.0010	100.0000	100.0344		100.0417	0.002200	0.3730	0.0020	0.0753	0.0534
<u> </u>	1.24020	0.0	0.0000	100.0000	100.0324		100.1104	0.004301	0.7140	0.0070	0.0733	0.1301
Δ	1 14947×	0.5	0.0005	100.0000	100.0226		100 0271	0.001863	0 2972	0.0017	0 0759	0.6312
A	1 14947×	1.0	0.0000	100.0000	100.0220		100.0271	0.007258	0.2072	0.0017	0.0759	0.6628
A	1.14947×	5.0	0.0050	100.0000	100.0917		100.1181	0.004669	0.7206	0.0070	0.0759	0.7597
	1.1101	0.0	0.0000		.00.0011			0.004000	0.1200	0.0010	0.0100	0.1001
A	1.05368×	0.5	0.0005	100.0000	100 0223		100 0269	0.001928	0.3008	0.0017	0.0759	0.6427
1 <u>1</u>	1.00000	1.0	0.0000	100.0000	100.0220		100.0200	0.000001020	0.0000	0.0000	0.0750	0.0427

And paste the data into excel or any other applicable application

	Microso	oft Exce	– B	ook3															3 🔀
8	<u>F</u> ıle	<u>E</u> dıt <u>\</u>	(iew	<u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ool	s <u>D</u> at	ta <u>W</u> indo	ow <u>H</u> elp	Ado <u>b</u> e f	PDF			Тура	e a questio	on for he	lp 🔻	- 6	×
D	🚔 📘	🔒 🐔	8	🗟 💖 🎖	6 🖻	100%	-	» Arı	al		- 10	- B 2	u≣	= = =	\$ %		🛛 🗕 🕭 🗸	Α.	, »
*	ı ta ta	i 🖉 🖬	xa	🔊 🖪 🖉	N W Re	eziv wit	h Chai	1965 En	d Review		1		. . 1	3- 23- L-CE	- C &	1	88 88	B ()	D.
			100000			1.7		- ,		• •		•	▼ = ∨ □	r or *o		~		<i>n</i> - \.	
i 420	A1	· •		F. HEC D		o: flumoo	Divor	Elumo D	ocob: A										
		· ·	3			1. liume	F	Flume R	each. A	н			k		м	N	0		_
1	HEC-R	AS Plan	flum	ie River F	Flume F	Reach: A	L	1	0		•	J	n.	L	191	IN			
2	Reach	River	Sta	Profile	Q Total	I Min	Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # 0	>hl			_
3					(m3/s)	(m)		(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)					_
4	A		1.82	0.6	5	0	100	100.02		100.03	0.00156	0.28	0	0.08	0.57				
5	A		1.82	1	1	0	100	100.04		100.04	0.00196	0.36	0	0.08	0.61				
6	A		1.82	6	5 0	.01	100	100.1		100.12	0.004212	0.69	0.01	0.08	0.71				_
17		4 70	04+		-		400	400.00		400.00	0.004.575	0.00		0.00	0.50				_
8	A	1.72	121° 101*	0.5	3	0	100	100.02		100.03	0.001575	0.28	0	0.08	0.58				_
10		1.72	+21 101*	F	5 0	01	100	100.04		100.04	0.00197	06.0 Pa 0	0.01	0.00	0.01				-
11	<u> </u>	1.72	121		, ,	.01	100	100.1		100.12	0.004200	0.00	0.01	0.00	0.71				-
12	A	1.628	342*	0.6	5	0	100	100.02		100.03	0.001615	0.28	0	0.08	0.59				_
13	A	1.628	342*	1	1	0	100	100.04		100.04	0.00201	0.37	0	0.08	0.62				
14	A	1.628	342*	6	5 0	.01	100	100.1		100.12	0.004273	0.69	0.01	0.08	0.72				
15																			
16	A	1.532	263*	0.6	5	0	100	100.02		100.03	0.001657	0.29	0	0.08	0.59				_
17	A	1.53	263*	1	1	0	100	100.04		100.04	0.002054	0.37	0	0.08	0.63				_
18	A	1.53.	263*	5	5 U	.01	100	100.09		100.12	0.004344	U.7	0.01	0.08	0.73				_
20	Δ	1 /30	8 / *	0.4	5	0	100	100.02		100.03	0.001702	0.29	0	0.08	0.6				-
20	Â	1.430	84*	0.0	1	0	100	100.02		100.03	0.001702	0.25	0	0.00	0.0				-
22	A	1.430		E	5 O	.01	100	100.09		100.04	0.004419	0.07	0.01	0.08	0.73				-
23																			-
24	А	1.341	05*	0.5	5	0	100	100.02		100.03	0.001751	0.29	0	0.08	0.61				
25	А	1.341	05*	1	1	0	100	100.03		100.04	0.002148	0.38	0	0.08	0.64				
26	A	1.341	05*	6	5 0	.01	100	100.09		100.12	0.004497	0.71	0.01	0.08	0.74				_
27					-		400	400.00		400.00	0.004004								_
28	A	1.249	026* Tac*	0.6		U	100	100.02		100.03	0.001804	0.29	U	0.08	0.62				_
29	A	1.24	026° :06*	E		01	100	100.03		100.04	0.0022	0.38	0.01	0.08	0.55				-
31	<u>^</u>	1.24	120	5	0 0	.01	100	100.09		100.12	0.004001	0.71	0.01	0.00	0.75				-
32	A	1.149	947*	0.5	5	0	100	100.02		100.03	0.001863	0.3	0	0.08	0.63		C.		-
H ·	(
Dr		Auto	Shape	55 - 🔪) 🔮 🔺	1 🗘 🛛	2 🔜 💩	- <u>/</u> - <u>A</u>	• =	= • <i>•</i>	l .							
Rea	dv					_								Sum=188	21.08001				
	-/													200					

This table provides water surface elevation, velocity, Froude number, area, width, energy grade line etc. Many more options are available under options/define table

🗰 Pro	ofile Output Table - Standard Table	1				. 🗆 🔀
File	Options Std. Tables Locations	Help				
	Plans	Reach	хA		Reloa	id Data
Reach	Profiles	S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Ve 🔺
	Reaches	<u>(m)</u>	(m)	(m)	(m/m)	<u> </u>
<u>A</u>		- 100.02		100.03	0.001560	
A	✓ Include Interpolated X5's	100.04		100.04	0.001960	
<u>A</u>	🗸 Include Node Names in Table	100.10		100.12	0.004212	
	✓ Include Profile Name in Table	100.02		100.03	0.001575	
A	Table Cross Section Order	100.04		100.04	0.001970	
A	Standard Table # Dec Places	100.10		100.12	0.004205	
	Units System for Viewing 🔰 🕨					▶
	Define Table					
	Save Table					
	Remove Table					

Double click any parameter (in the Available Variables) to add it to your table.

HEC-RAS	- River Analy: Run View	ois System Options H	elp										
FB	<u>** 100 × 5</u>	но 🖵 🏄		F L L I] 🎹 😰 os	S Hydrologic En US Army Corp	gineering Center						
Project:	flume_study			C:\HEC Data\	RAS\flume_stu	dy.prj							
Plan:	Create a Tabl	e Heading					ls\flume_study.p01						
Geometry:	Select Variables	Select Variables Additional Options											
Steady Flow:			Toble Colum	un Hoodingo			Is\flume_study.f01						
Unsteady Flow:	Column	1	2	2 S	A	5							
Project Description :	Variable	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	Jnits						
Docomption.	Units	(m3/s)	(m)	(m)	(m)	(m)							
-	Decimal Pts	2	2	2	2	2							
	Delete Col	umn	Insert I	Column	Clear All T.	able Headings							
	Delete col	<u>ann </u>	Available	Variables		abie medalings	and Data 1						
	Q Perc Chan Q Perc L Q Perc R Q Pump Group Q Pump Station Q Right	Q Total Q US Q Weir R. Freeboard R. Levee Frbrd Rght Sta Eff	ROB Elev SA Area SA Chan SA Left SA Min El SA Right	SA Tot SA Vol Shear Shear Shear Shear	al Spo ume Spo Chan Sta LOB Sta ROB Std Total Top	c Force PR ecif Force W.S. Lft W.S. Rgt IStp Case o W Act Chan	be Ve ▲ (r 30 30 2 75 70 05 ▼						
					<u> </u>	Cancel							

Now that we have selected all three flows, we can go back to the main menu and the plot profile tab to compare the three flows.

HEC-RAS	5 - River Analysis System	
File Edit	Run View Options	ielp
FB X	主命上生のマ	Hydrologic Engineering Center
Project:	flume_study	C:\CDURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.prj
Plan:	flume	C:\CDURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.p01
Geometry:	flume	C:\CDURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.g01
Steady Flow:	flume	C:\CDURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.f01
Unsteady Flow:		
Project Description :		SI Units

One last step let's go ahead and save the .prj or project file we have been working on.

🔣 HEC-RAS	ó - River Analysis System	
File Edit	Run View Options Help	
FRX	ᅸᇳᅸᅸᄪᢦᄬ灣ᆮᄬ	F L L II TO DSS Hydrologic Engineering Center
Project:	flume_study	C:\HEC Data\RAS\flume_study.prj
Plan:	flume	C:\COURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.p01
Geometry:	flume	C:\COURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.g01
Steady Flow:	flume_study	C:\COURSES\CE_381\HEC_RAS_RUNS\tutorials\flume_study.f01
Unsteady Flow:		
Project Description :		SI Units

Nice work, you now know how to run HEC-RAS.

When you attempt to calibrate your results to observed data, there are only three things you can vary:

- A. the Manning's n coefficient (within a reasonable range)
- B. flow range (examine the min, max and mean flow ranges that you observed)
- C. the exact location of the critical depth location

